Antihypertensive and renal protection effects of lercanidipine and lercanidipine/enalapril

Renal protection by lercanidipine

Nicola Ferri
Department of Medicine, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy; Centro di Ricerca Coordinata sulle Interazioni Farmacologiche; Milan, Italy.
Alberto Corsini
Centro di Ricerca Coordinata sulle Interazioni Farmacologiche; Milan, Italy; Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
Roberto Pontremoli
Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy

Abstract

Systemic arterial hypertension is the second most common cause of end-stage kidney disease (ESKD). Renal protection activity has been demonstrated for angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), gliflozins (dapagliflozin ed empagliflozin) and by the third-generation calcium channel blockers (CCB). Lercanidipine, a third-generation calcium channel blocker, has been shown to have a unique pharmacological and clinical profile, which translates into favorable renal hemodynamic changes. Here we summarized the pharmacological properties of lercanidipine and evaluate its ability to reduce proteinuria and preserve renal function when used as monotherapy or in combination with the angiotensin-converting enzyme (ACE) inhibitor enalapril. The fixed-dose combination lercanidipine/enalapril showed an excellent pharmacological profile with demonstrated clinical efficacy and tolerability in high-risk patients. Lercanidipine can be considered the preferred choice among calcium channel blocker drugs for the treatment of hypertensive patients at risk of renal impairment.

References

  1. Mancia G, Kreutz R, Brunstrom M, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens 2023; 41:1874-2071. https://doi.org/10.1097/HJH.0000000000003480
  2. Kario K, Okura A, Hoshide S, Mogi M. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens Res 2024; 47:1099-102. https://doi.org/10.1038/s41440-024-01622-w
  3. Leoncini G, Viazzi F, Pontremoli R. Chronic kidney disease and albuminuria in arterial hypertension. Curr Hypertens Rep 2010; 12:335-41. https://doi.org/10.1007/s11906-010-0141-3
  4. Pontremoli R, Leoncini G, Ravera M, et al. Microalbuminuria, cardiovascular, and renal risk in primary hypertension. J Am Soc Nephrol 2002; 13 Suppl 3:S169-72. https://doi.org/10.1097/01.asn.0000032601.86590.f7
  5. Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev 2015; 95:405-511. https://doi.org/10.1152/physrev.00042.2012
  6. Mennuni S, Rubattu S, Pierelli G, et al. Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens 2014; 28:74-9. https://doi.org/10.1038/jhh.2013.55
  7. Neuringer JR, Brenner BM. Hemodynamic theory of progressive renal disease: a 10-year update in brief review. Am J Kidney Dis 1993; 22:98-104. https://doi.org/10.1016/s0272-6386(12)70174-9
  8. Viazzi F, Leoncini G, Grassi G, Pontremoli R. Antihypertensive treatment and renal protection: Is there a J-curve relationship? J Clin Hypertens (Greenwich) 2018; 20:1560-74. https://doi.org/10.1111/jch.13396
  9. The E-KCG, Herrington WG, Staplin N, et al. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2023; 388:117-27. https://doi.org/10.1056/NEJMoa2204233
  10. Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020; 383:1436-46. https://doi.org/10.1056/NEJMoa2024816
  11. Burnier M. Renal protection with calcium antagonists: the role of lercanidipine. Curr Med Res Opin 2013; 29:1727-35. https://doi.org/10.1185/03007995.2013.842891
  12. Sabbatini M, Leonardi A, Testa R, et al. Effects of dihydropyridine-type Ca2+ antagonists on the renal arterial tree in spontaneously hypertensive rats. J Cardiovasc Pharmacol 2002; 39:39-48. https://doi.org/10.1097/00005344-200201000-00005
  13. Tocci G, Palano F, Pagannone E, et al. Fixed-combination therapies in hypertension management: focus on enalapril/lercanidipine. Expert Rev Cardiovasc Ther 2009; 7:115-23. https://doi.org/10.1586/14779072.7.2.115
  14. Borghi C, Cicero AF. Rationale for the use of a fixed-dose combination in the management of hypertension: efficacy and tolerability of lercanidipine/enalapril. Clin Drug Investig 2010; 30:843-54. https://doi.org/10.1007/BF03256912
  15. Bakris G. Are there effects of renin-angiotensin system antagonists beyond blood pressure control? Am J Cardiol 2010; 105:21A-9A. https://doi.org/10.1016/j.amjcard.2009.10.010
  16. Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med 2008; 359:2417-28. https://doi.org/10.1056/NEJMoa0806182
  17. Barrios V, Escobar C, Echarri R. Fixed combinations in the management of hypertension: perspectives on lercanidipine-enalapril. Vasc Health Risk Manag 2008; 4:847-53. https://doi.org/10.2147/vhrm.s3421
  18. Gasser R, Klein W, Köppel H. Lercanidipine, a new third generation Ca-antagonist in the treatment of hypertension. Journal of Clinical and Basic Cardiology 1999; 2:169-74. https://www.kup.at/journals/abbildungen/57.html
  19. Brixius K, Gross T, Tossios P, et al. Increased vascular selectivity and prolonged pharmacological efficacy of the L-type Ca2+ channel antagonist lercanidipine in human cardiovascular tissue. Clin Exp Pharmacol Physiol 2005; 32:708-13. https://doi.org/10.1111/j.1440-1681.2005.04265.x
  20. Sabbatini M, Leonardi A, Testa R, et al. Effect of calcium antagonists on glomerular arterioles in spontaneously hypertensive rats. Hypertension 2000; 35:775-9. https://doi.org/10.1161/01.hyp.35.3.775
  21. Grassi G, Robles NR, Seravalle G, Fici F. Lercanidipine in the Management of Hypertension: An Update. J Pharmacol Pharmacother 2017; 8:155-65. https://doi.org/10.4103/jpp.JPP_34_17
  22. Hayashi K, Homma K, Wakino S, et al. T-type Ca channel blockade as a determinant of kidney protection. Keio J Med 2010; 59:84-95. https://doi.org/10.2302/kjm.59.84
  23. Hayashi K, Ozawa Y, Fujiwara K, et al. Role of actions of calcium antagonists on efferent arterioles--with special references to glomerular hypertension. Am J Nephrol 2003; 23:229-44. https://doi.org/10.1159/000072054
  24. Cerbai E, Mugelli A. Lercanidipine and T-type calcium current. Eur Rev Med Pharmacol Sci 2018; 22:4025-31. https://doi.org/10.26355/eurrev_201806_15289
  25. Jabor VA, Coelho EB, Lanchote VL. Enantioselective pharmacokinetics of lercanidipine in healthy volunteers. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 813:343-6. https://doi.org/10.1016/j.jchromb.2004.09.038
  26. [Available from: https://www.epicentro.iss.it/passi/dati/cardiovascolare?tab-container-1=tab1.
  27. Barchielli M, Dolfini E, Farina P, et al. Clinical Pharmacokinetics of Lercanidipine. J Cardiovasc Pharmacol 1997; 29:S1-S15. https://journals.lww.com/cardiovascularpharm/fulltext/1997/29002/clinical_pharmacokinetics_of_lercanidipine.2.aspx
  28. Klotz U. Interaction potential of lercanidipine, a new vasoselective dihydropyridine calcium antagonist. Arzneimittelforschung 2002; 52:155-61. https://doi.org/10.1055/s-0031-1299873
  29. Zamir A, Hussain I, Ur Rehman A, et al. Clinical Pharmacokinetics of Metoprolol: A Systematic Review. Clin Pharmacokinet 2022; 61:1095-114. https://doi.org/10.1007/s40262-022-01145-y
  30. Dinnendahl V, Fricke U. Dinnendahl, V; Fricke, U, eds. (2015). Arzneistoff-Profile (in German). 6 (28 ed.). Eschborn, Germany: Govi Pharmazeutischer Verlag. ISBN 978-3-7741-9846-3.2015.
  31. Rosenthal T, Rosenmann E, Tomassoni D, Amenta F. Effect of lercanidipine on kidney microanatomy in Cohen-Rosenthal diabetic hypertensive rats. J Cardiovasc Pharmacol Ther 2007; 12:145-52. https://doi.org/10.1177/1074248407300621
  32. Menne J, Park JK, Agrawal R, et al. Cellular and molecular mechanisms of tissue protection by lipophilic calcium channel blockers. FASEB J 2006; 20:994-6. https://doi.org/10.1096/fj.05-4087fje
  33. Borghi C, Santi F. Fixed combination of lercanidipine and enalapril in the management of hypertension: focus on patient preference and adherence. Patient Prefer Adherence 2012; 6:449-55. https://doi.org/10.2147/PPA.S23232
  34. Dalla Vestra M, Pozza G, Mosca A, et al. Effect of lercanidipine compared with ramipril on albumin excretion rate in hypertensive Type 2 diabetic patients with microalbuminuria: DIAL study (diabete, ipertensione, albuminuria, lercanidipina). Diabetes Nutr Metab 2004; 17:259-66. https://www.ncbi.nlm.nih.gov/pubmed/16295047
  35. Robles NR, Calvo C, Sobrino J, et al. Lercanidipine valuable effect on urine protein losses: the RED LEVEL study. Curr Med Res Opin 2016; 32:29-34. https://doi.org/10.1080/03007995.2016.1218838
  36. Robles NR, Ocon J, Gomez CF, et al. Lercanidipine in patients with chronic renal failure: the ZAFRA study. Ren Fail 2005; 27:73-80. https://doi.org/10.1081/JDI-42801
  37. Robles NR, Romero B, de Vinuesa EG, et al. Treatment of proteinuria with lercanidipine associated with renin-angiotensin axis-blocking drugs. Ren Fail 2010; 32:192-7. https://doi.org/10.3109/08860220903541135
  38. Hansson L, Hedner T, Dahlof B. Prospective randomized open blinded end-point (PROBE) study. A novel design for intervention trials. Prospective Randomized Open Blinded End-Point. Blood Press 1992; 1:113-9. https://doi.org/10.3109/08037059209077502
  39. Kidney Disease: Improving Global Outcomes Glomerular Diseases Work G. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int 2021; 100:S1-S276. https://doi.org/10.1016/j.kint.2021.05.021
  40. Wu JR, Liou SF, Lin SW, et al. Lercanidipine inhibits vascular smooth muscle cell proliferation and neointimal formation via reducing intracellular reactive oxygen species and inactivating Ras-ERK1/2 signaling. Pharmacol Res 2009; 59:48-56. https://doi.org/10.1016/j.phrs.2008.09.015
  41. Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem Soc Rev 2019; 48:3102-44. https://doi.org/10.1039/c8cs00420j

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached