PCSK9 in extrahepatic tissues: What can we expect from its inhibition?
PCSK9 inhibition beyond the liver
Copyright (c) 2023 European Atherosclerosis Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- Articles
-
Published: August 31, 2023
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that belongs to the serine protease family and plays a key role in regulating low-density lipoprotein cholesterol (LDL-C) levels in the blood. PCSK9 binds to the LDL receptor (LDLR), targeting it for degradation, resulting in an increase in circulating LDL-C levels. Loss-of-function mutations in the PCSK9 gene are associated with lower LDL-C levels and lower cardiovascular risk; in contrast, gain-of-function mutations are a cause of familial hypercholesterolaemia. The identification of PCSK9 as a pharmacological target led to the development of inhibitors for the treatment of hypercholesterolaemia. To date, the monoclonal antibodies evolocumab and alirocumab (which target plasma PCSK9) and the small-interfering RNA inclisiran (which targets hepatic PCSK9 mRNA) have been approved for the treatment of hypercholesterolaemia. Although hepatic PCSK9 plays a central role in regulating plasma LDL-C levels, this protein is also expressed in other tissues, including the brain, pancreas, heart, kidney, intestine and adipose tissue. In extrahepatic tissues, the functions of PCSK9 are both dependent and independent of LDLR and not necessarily harmful. For this reason, it is essential to uncover any potentially harmful effects of therapies that inhibit PCSK9, beyond their known LDL-C-lowering and CV risk-reducing effects.
Article Metrics Graph
References
- Seidah NG, Prat A. The Multifaceted Biology of PCSK9. Endocr Rev 2022; 43:558-82. https://doi.org/10.1210/endrev/bnab035
- Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34:154-6. https://doi.org/10.1038/ng1161
- Cohen J, Pertsemlidis A, Kotowski IK, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 2005; 37:161-5. https://doi.org/10.1038/ng1509
- Cohen JC, Boerwinkle E, Mosley TH, Jr., Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354:1264-72. https://doi.org/10.1056/NEJMoa054013
- Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006; 79:514-23. https://doi.org/10.1086/507488
- Humphries SE, Neely RD, Whittall RA, et al. Healthy individuals carrying the PCSK9 p.R46L variant and familial hypercholesterolemia patients carrying PCSK9 p.D374Y exhibit lower plasma concentrations of PCSK9. Clin Chem 2009; 55:2153-61. https://doi.org/10.1373/clinchem.2009.129759
- Mabuchi H, Nohara A, Noguchi T, et al. Genotypic and phenotypic features in homozygous familial hypercholesterolemia caused by proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation. Atherosclerosis 2014; 236:54-61. https://doi.org/10.1016/j.atherosclerosis.2014.06.005
- Noguchi T, Katsuda S, Kawashiri MA, et al. The E32K variant of PCSK9 exacerbates the phenotype of familial hypercholesterolaemia by increasing PCSK9 function and concentration in the circulation. Atherosclerosis 2010; 210:166-72. https://doi.org/10.1016/j.atherosclerosis.2009.11.018
- Sanchez-Hernandez RM, Di Taranto MD, Benito-Vicente A, et al. The Arg499His gain-of-function mutation in the C-terminal domain of PCSK9. Atherosclerosis 2019; 289:162-72. https://doi.org/10.1016/j.atherosclerosis.2019.08.020
- Sarkar SK, Matyas A, Asikhia I, et al. Pathogenic gain-of-function mutations in the prodomain and C-terminal domain of PCSK9 inhibit LDL binding. Front Physiol 2022; 13:960272. https://doi.org/10.3389/fphys.2022.960272
- Huijgen R, Blom DJ, Hartgers ML, et al. Novel PCSK9 (Proprotein Convertase Subtilisin Kexin Type 9) Variants in Patients With Familial Hypercholesterolemia From Cape Town. Arterioscler Thromb Vasc Biol 2021; 41:934-43. https://doi.org/10.1161/ATVBAHA.120.314482
- Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017; 376:1713-22. https://doi.org/10.1056/NEJMoa1615664
- Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018; 379:2097-107. https://doi.org/10.1056/NEJMoa1801174
- O'Connell EM, Lohoff FW. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in the Brain and Relevance for Neuropsychiatric Disorders. Front Neurosci 2020; 14:609. https://doi.org/10.3389/fnins.2020.00609
- Dietschy JM. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem 2009; 390:287-93. https://doi.org/10.1515/BC.2009.035
- Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 2008; 283:2363-72. https://doi.org/10.1074/jbc.M708098200
- Chen YQ, Troutt JS, Konrad RJ. PCSK9 is present in human cerebrospinal fluid and is maintained at remarkably constant concentrations throughout the course of the day. Lipids 2014; 49:445-55. https://doi.org/10.1007/s11745-014-3895-6
- Garcia-Morales V, Gonzalez-Acedo A, Melguizo-Rodriguez L, et al. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer's Disease. Biomedicines 2021; 9. https://doi.org/10.3390/biomedicines9121910
- Bell AS, Wagner J, Rosoff DB, Lohoff FW. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neurosci Biobehav Rev 2023; 149:105155. https://doi.org/10.1016/j.neubiorev.2023.105155
- Reed B, Villeneuve S, Mack W, et al. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol 2014; 71:195-200. https://doi.org/10.1001/jamaneurol.2013.5390
- Storck SE, Meister S, Nahrath J, et al. Endothelial LRP1 transports amyloid-beta(1-42) across the blood-brain barrier. J Clin Invest 2016; 126:123-36. https://doi.org/10.1172/JCI81108
- Li J, Li M, Ge Y, et al. beta-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease. Cell Biosci 2022; 12:69. https://doi.org/10.1186/s13578-022-00807-5
- Mazura AD, Ohler A, Storck SE, et al. PCSK9 acts as a key regulator of Abeta clearance across the blood-brain barrier. Cell Mol Life Sci 2022; 79:212. https://doi.org/10.1007/s00018-022-04237-x
- Kysenius K, Muggalla P, Matlik K, et al. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci 2012; 69:1903-16. https://doi.org/10.1007/s00018-012-0977-6
- Giugliano RP, Mach F, Zavitz K, et al. Cognitive Function in a Randomized Trial of Evolocumab. N Engl J Med 2017; 377:633-43. https://doi.org/10.1056/NEJMoa1701131
- Robinson JG, Rosenson RS, Farnier M, et al. Safety of Very Low Low-Density Lipoprotein Cholesterol Levels With Alirocumab: Pooled Data From Randomized Trials. J Am Coll Cardiol 2017; 69:471-82. https://doi.org/10.1016/j.jacc.2016.11.037
- Guedeney P, Giustino G, Sorrentino S, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J 2019. https://doi.org/10.1093/eurheartj/ehz430
- Gencer B, Mach F, Guo J, et al. Cognition After Lowering LDL-Cholesterol With Evolocumab. J Am Coll Cardiol 2020; 75:2283-93. https://doi.org/10.1016/j.jacc.2020.03.039
- Ying H, Wang J, Shen Z, et al. Impact of Lowering Low-Density Lipoprotein Cholesterol with Contemporary Lipid-Lowering Medicines on Cognitive Function: A Systematic Review and Meta-Analysis. Cardiovasc Drugs Ther 2021; 35:153-66. https://doi.org/10.1007/s10557-020-07045-2
- Gaba P, O'Donoghue ML, Park JG, et al. Association Between Achieved Low-Density Lipoprotein Cholesterol Levels and Long-Term Cardiovascular and Safety Outcomes: An Analysis of FOURIER-OLE. Circulation 2023; 147:1192-203. https://doi.org/10.1161/CIRCULATIONAHA.122.063399
- Mefford MT, Rosenson RS, Cushman M, et al. PCSK9 Variants, Low-Density Lipoprotein Cholesterol, and Neurocognitive Impairment: Reasons for Geographic and Racial Differences in Stroke Study (REGARDS). Circulation 2018; 137:1260-9. https://doi.org/10.1161/CIRCULATIONAHA.117.029785
- Rosoff DB, Bell AS, Jung J, et al. Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Cognitive Function. J Am Coll Cardiol 2022; 80:653-62. https://doi.org/10.1016/j.jacc.2022.05.041
- Bell AS, Rosoff DB, Mavromatis LA, et al. Comparing the Relationships of Genetically Proxied PCSK9 Inhibition With Mood Disorders, Cognition, and Dementia Between Men and Women: A Drug-Target Mendelian Randomization Study. J Am Heart Assoc 2022; 11:e026122. https://doi.org/10.1161/JAHA.122.026122
- Evans MA, Golomb BA. Statin-associated adverse cognitive effects: survey results from 171 patients. Pharmacotherapy 2009; 29:800-11. https://doi.org/10.1592/phco.29.7.800
- Parker BA, Polk DM, Rabdiya V, et al. Changes in Memory Function and Neuronal Activation Associated with Atorvastatin Therapy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2010; 30:625-. https://doi.org/10.1592/phco.30.6.625
- Williams DM, Finan C, Schmidt AF, et al. Lipid lowering and Alzheimer disease risk: A mendelian randomization study. Ann Neurol 2020; 87:30-9. https://doi.org/10.1002/ana.25642
- Gouverneur A, Sanchez-Pena P, Veyrac G, et al. Neurocognitive Disorders Associated with PCSK9 Inhibitors: a Pharmacovigilance Disproportionality Analysis. Cardiovasc Drugs Ther 2023; 37:271-6. https://doi.org/10.1007/s10557-021-07242-7
- Perego C, Da Dalt L, Pirillo A, et al. Cholesterol metabolism, pancreatic beta-cell function and diabetes. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2149-56. https://doi.org/10.1016/j.bbadis.2019.04.012
- Casula M, Mozzanica F, Scotti L, et al. Statin use and risk of new-onset diabetes: a meta-analysis of observational studies. Nutr Metab Cardiovasc Dis 2017; 27:396-406. https://doi.org/10.1016/j.numecd.2017.03.001
- Tcheoubi SER, Akpovi CD, Coppee F, et al. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-60. https://doi.org/10.1080/1061186X.2022.2092622
- Schmidt AF, Swerdlow DI, Holmes MV, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol 2017; 5:97-105. https://doi.org/10.1016/S2213-8587(16)30396-5
- Lotta LA, Sharp SJ, Burgess S, et al. Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes: A Meta-analysis. JAMA 2016; 316:1383-91. https://doi.org/10.1001/jama.2016.14568
- Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med 2016; 375:2144-53. https://doi.org/10.1056/NEJMoa1604304
- Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol 2017; 5:941-50. https://doi.org/10.1016/S2213-8587(17)30313-3
- O'Donoghue ML, Giugliano RP, Wiviott SD, et al. Long-Term Evolocumab in Patients With Established Atherosclerotic Cardiovascular Disease. Circulation 2022; 146:1109-19. https://doi.org/10.1161/CIRCULATIONAHA.122.061620
- Da Dalt L, Ruscica M, Bonacina F, et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J 2019; 40:357-68. https://doi.org/10.1093/eurheartj/ehy357
- Peyot ML, Roubtsova A, Lussier R, et al. Substantial PCSK9 inactivation in beta-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158968. https://doi.org/10.1016/j.bbalip.2021.158968
- Marku A, Da Dalt L, Galli A, et al. Pancreatic PCSK9 controls the organization of the beta-cell secretory pathway via LDLR-cholesterol axis. Metabolism 2022; 136:155291. https://doi.org/10.1016/j.metabol.2022.155291
- Schluter KD, Wolf A, Weber M, et al. Oxidized low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase subtilisin/kexin 9 (PCSK9)-dependent way. Basic Res Cardiol 2017; 112:63. https://doi.org/10.1007/s00395-017-0650-1
- Ding Z, Wang X, Liu S, et al. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 2018; 114:1738-51. https://doi.org/10.1093/cvr/cvy128
- Yang CL, Zeng YD, Hu ZX, Liang H. PCSK9 promotes the secretion of pro-inflammatory cytokines by macrophages to aggravate H/R-induced cardiomyocyte injury via activating NF-kappaB signalling. Gen Physiol Biophys 2020; 39:123-34. http://dx.doi.org/10.4149/gpb_2019057
- Wolf A, Kutsche HS, Schreckenberg R, et al. Autocrine effects of PCSK9 on cardiomyocytes. Basic Res Cardiol 2020; 115:65. https://doi.org/10.1007/s00395-020-00824-w
- Huang G, Bao H, Zhan P, et al. PCSK9 regulates myocardial ischemia–reperfusion injury through parkin/pink1-mediated autophagy pathway. Molecular & Cellular Toxicology 2023. https://doi.org/10.1007/s13273-023-00352-3
- Wang F, Li M, Zhang A, et al. PCSK9 Modulates Macrophage Polarization-Mediated Ventricular Remodeling after Myocardial Infarction. J Immunol Res 2022; 2022:7685796. https://doi.org/10.1155/2022/7685796
- Huang G, Lu X, Duan Z, et al. PCSK9 Knockdown Can Improve Myocardial Ischemia/Reperfusion Injury by Inhibiting Autophagy. Cardiovascular Toxicology 2022; 22:951-61. https://doi.org/10.1007/s12012-022-09771-5
- Palee S, McSweeney CM, Maneechote C, et al. PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. J Cell Mol Med 2019; 23:7310-9. https://doi.org/10.1111/jcmm.14586
- Zeng C, Duan F, Hu J, et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol 2020; 34:101523. https://doi.org/10.1016/j.redox.2020.101523
- Wang X, Li X, Liu S, et al. PCSK9 regulates pyroptosis via mtDNA damage in chronic myocardial ischemia. Basic Res Cardiol 2020; 115:66. https://doi.org/10.1007/s00395-020-00832-w
- Da Dalt L, Castiglioni L, Baragetti A, et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J 2021; 42:3078-90. https://doi.org/10.1093/eurheartj/ehab431
- Laudette M, Lindbom M, Arif M, et al. Cardiomyocyte-specific PCSK9 deficiency compromises mitochondrial bioenergetics and heart function. Cardiovasc Res 2023; 119:1537-52. https://doi.org/10.1093/cvr/cvad041
- Baragetti A, Balzarotti G, Grigore L, et al. PCSK9 deficiency results in increased ectopic fat accumulation in experimental models and in humans. Eur J Prev Cardiol 2017; 24:1870-7. https://doi.org/10.1177/2047487317724342
- Trudso LC, Ghouse J, Ahlberg G, et al. Association of PCSK9 Loss-of-Function Variants With Risk of Heart Failure. JAMA Cardiol 2023; 8:159-66. https://doi.org/10.1001/jamacardio.2022.4798
- White HD, Steg PG, Szarek M, et al. Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial. Eur Heart J 2019; 40:2801-9. https://doi.org/10.1093/eurheartj/ehz299
- Wiviott SD, Giugliano RP, Morrow DA, et al. Effect of Evolocumab on Type and Size of Subsequent Myocardial Infarction: A Prespecified Analysis of the FOURIER Randomized Clinical Trial. JAMA Cardiol 2020; 5:787-93. https://doi.org/10.1001/jamacardio.2020.0764
- Asbeutah AAA, Asbeutah SA, Abu-Assi MA. A Meta-Analysis of Cardiovascular Outcomes in Patients With Hypercholesterolemia Treated With Inclisiran. Am J Cardiol 2020; 128:218-9. https://doi.org/10.1016/j.amjcard.2020.05.024
- White HD, Schwartz GG, Szarek M, et al. Alirocumab after acute coronary syndrome in patients with a history of heart failure. Eur Heart J 2022; 43:1554-65. https://doi.org/10.1093/eurheartj/ehab804
- Niessner A, Drexel H. PCSK9 inhibition in patients with heart failure: neutral or harmful intervention? Eur Heart J 2022; 43:1566-8. https://doi.org/10.1093/eurheartj/ehab913
- Sharotri V, Collier DM, Olson DR, et al. Regulation of epithelial sodium channel trafficking by proprotein convertase subtilisin/kexin type 9 (PCSK9). J Biol Chem 2012; 287:19266-74. https://doi.org/10.1074/jbc.M112.363382
- Kwakernaak AJ, Lambert G, Slagman MC, et al. Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis 2013; 226:459-65. https://doi.org/10.1016/j.atherosclerosis.2012.11.009
- Jin K, Park BS, Kim YW, Vaziri ND. Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis 2014; 63:584-9. https://doi.org/10.1053/j.ajkd.2013.10.042
- Haas ME, Levenson AE, Sun X, et al. The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation 2016; 134:61-72. https://doi.org/10.1161/CIRCULATIONAHA.115.020912
- Konarzewski M, Szolkiewicz M, Sucajtys-Szulc E, et al. Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am J Nephrol 2014; 40:157-63. https://doi.org/10.1159/000365935
- Abujrad H, Mayne J, Ruzicka M, et al. Chronic kidney disease on hemodialysis is associated with decreased serum PCSK9 levels. Atherosclerosis 2014; 233:123-9. https://doi.org/10.1016/j.atherosclerosis.2013.12.030
- Fellstrom BC, Jardine AG, Schmieder RE, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 2009; 360:1395-407. https://doi.org/10.1056/NEJMoa0810177
- Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 2005; 353:238-48. https://doi.org/10.1056/NEJMoa043545
- Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 2011; 377:2181-92. https://doi.org/10.1016/S0140-6736(11)60739-3
- Igweonu-Nwakile EO, Ali S, Paul S, et al. A Systematic Review on the Safety and Efficacy of PCSK9 Inhibitors in Lowering Cardiovascular Risks in Patients With Chronic Kidney Disease. Cureus 2022; 14:e29140. https://doi.org/10.7759/cureus.29140
- Charytan DM, Sabatine MS, Pedersen TR, et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol 2019; 73:2961-70. https://doi.org/10.1016/j.jacc.2019.03.513
- Toth PP, Dwyer JP, Cannon CP, et al. Efficacy and safety of lipid lowering by alirocumab in chronic kidney disease. Kidney Int 2018; 93:1397-408. https://doi.org/10.1016/j.kint.2017.12.011
- Tunon J, Steg PG, Bhatt DL, et al. Effect of alirocumab on major adverse cardiovascular events according to renal function in patients with a recent acute coronary syndrome: prespecified analysis from the ODYSSEY OUTCOMES randomized clinical trial. Eur Heart J 2020; 41:4114-23. https://doi.org/10.1093/eurheartj/ehaa498
- Duan Y, Gong K, Xu S, et al. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduction and Targeted Therapy 2022; 7:265. https://doi.org/10.1038/s41392-022-01125-5
- Le May C, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol 2009; 29:684-90. https://doi.org/10.1161/ATVBAHA.108.181586
- Moreau F, Thedrez A, Garcon D, et al. PCSK9 is not secreted from mature differentiated intestinal cells. J Lipid Res 2021; 62:100096. https://doi.org/10.1016/j.jlr.2021.100096
- Garcon D, Moreau F, Ayer A, et al. Circulating Rather Than Intestinal PCSK9 (Proprotein Convertase Subtilisin Kexin Type 9) Regulates Postprandial Lipemia in Mice. Arterioscler Thromb Vasc Biol 2020; 40:2084-94. https://doi.org/10.1161/ATVBAHA.120.314194
- Ooi TC, Krysa JA, Chaker S, et al. The Effect of PCSK9 Loss-of-Function Variants on the Postprandial Lipid and ApoB-Lipoprotein Response. J Clin Endocrinol Metab 2017; 102:3452-60. https://doi.org/10.1210/jc.2017-00684
- Taskinen MR, Bjornson E, Andersson L, et al. Impact of proprotein convertase subtilisin/kexin type 9 inhibition with evolocumab on the postprandial responses of triglyceride-rich lipoproteins in type II diabetic subjects. J Clin Lipidol 2020; 14:77-87. https://doi.org/10.1016/j.jacl.2019.12.003
- Burggraaf B, Pouw NMC, Arroyo SF, et al. A placebo-controlled proof-of-concept study of alirocumab on postprandial lipids and vascular elasticity in insulin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab 2020; 22:807-16. https://doi.org/10.1111/dom.13960
- Chan DC, Watts GF, Somaratne R, et al. Comparative Effects of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Inhibition and Statins on Postprandial Triglyceride-Rich Lipoprotein Metabolism. Arterioscler Thromb Vasc Biol 2018; 38:1644-55. https://doi.org/10.1161/ATVBAHA.118.310882
- Reyes-Soffer G, Pavlyha M, Ngai C, et al. Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans. Circulation 2017; 135:352-62. https://doi.org/10.1161/CIRCULATIONAHA.116.025253
- Rashid S, Tavori H, Brown PE, et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation 2014; 130:431-41. https://doi.org/10.1161/CIRCULATIONAHA.113.006720
- Levy E, Ben Djoudi Ouadda A, Spahis S, et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 2013; 227:297-306. https://doi.org/10.1016/j.atherosclerosis.2013.01.023
- Drouin-Chartier JP, Tremblay AJ, Hogue JC, et al. Plasma PCSK9 correlates with apoB-48-containing triglyceride-rich lipoprotein production in men with insulin resistance. J Lipid Res 2018; 59:1501-9. https://doi.org/10.1194/jlr.M086264
- Khedoe PP, Hoeke G, Kooijman S, et al. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res 2015; 56:51-9. https://doi.org/10.1194/jlr.M052746
- Zhang Y, McGillicuddy FC, Hinkle CC, et al. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation 2010; 121:1347-55. https://doi.org/10.1161/CIRCULATIONAHA.109.897330
- Roubtsova A, Munkonda MN, Awan Z, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 2011; 31:785-91. https://doi.org/10.1161/ATVBAHA.110.220988
- Demers A, Samami S, Lauzier B, et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol 2015; 35:2517-25. https://doi.org/10.1161/ATVBAHA.115.306032
- Bordicchia M, Spannella F, Ferretti G, et al. PCSK9 is Expressed in Human Visceral Adipose Tissue and Regulated by Insulin and Cardiac Natriuretic Peptides. Int J Mol Sci 2019; 20. https://doi.org/10.3390/ijms20020245
- Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2004; 24:1454-9. https://doi.org/10.1161/01.ATV.0000134621.14315.43
- Shu X, Wu J, Zhang T, et al. Statin-Induced Geranylgeranyl Pyrophosphate Depletion Promotes PCSK9-Dependent Adipose Insulin Resistance. Nutrients 2022; 14. https://doi.org/10.3390/nu14245314
- Cyr Y, Lamantia V, Bissonnette S, et al. Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surface-expression of LDLR and CD36 and NLRP3 inflammasome. Physiol Rep 2021; 9:e14721. https://doi.org/10.14814/phy2.14721
- Faraj M. LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue. J Biomed Res 2020; 34:251-9. https://doi.org/10.7555/JBR.34.20190124
- Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol 2015; 11:363-71. https://doi.org/10.1038/nrendo.2015.58
- Li C, Liu X, Adhikari BK, et al. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: an overview of pathophysiology, evaluation, and management. Front Endocrinol (Lausanne) 2023; 14:1167952. https://doi.org/10.3389/fendo.2023.1167952
- Dozio E, Ruscica M, Vianello E, et al. PCSK9 Expression in Epicardial Adipose Tissue: Molecular Association with Local Tissue Inflammation. Mediators Inflamm 2020; 2020:1348913. https://doi.org/10.1155/2020/1348913