Atherosclerosis associated with Chlamydia pneumoniae: Dissecting the etiology
Chlamydia pneumoniae and atherosclerosis
Copyright (c) 2024 European Atherosclerosis Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- Articles
-
Published: August 31, 2024
Abstract
Chlamydia pneumoniae related infections and atherosclerosis are both common entities. Today, the literature presents an enormous amount of data regarding the role of C. pneumoniae in the development and sustainment of atherosclerosis and allowing us to comprehend the molecular mechanisms behind better. The implications of C. pneumoniae in atherogenesis include altered platelet function, hypercoagulability, macrophage dysfunction, vascular smooth muscle proliferation, and increased neutrophilic migration. Therefore, it would not be wrong to implicate that, C. pneumoniae plays important roles in almost every stage of atherogenesis. Furthermore, various serological markers suggestive of active or past C. pneumoniae infection are known to be associated with multiple clinical presentations, such as abdominal aortic aneurysms, subclinical atherosclerosis in the young individuals, aggravated atherosclerosis in heterozygous familial hypercholesterolemia. This review, as a result, aims to provide detailed insights into the pathophysiological mechanisms of atherogenesis associated with C. pneumoniae and its clinical implications.
Article Metrics Graph
References
- Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res. 2016 Feb 19;118(4):535–46. https://doi.org/10.1161/CIRCRESAHA.115.307611
- Eberhardt N, Giannarelli C. How Single-Cell Technologies Have Provided New Insights Into Atherosclerosis. Arterioscler Thromb Vasc Biol. 2022 Mar;42(3):243–52. https://doi.org/10.1161/ATVBAHA.121.315849
- Milioti N, Bermudez-Fajardo A, Penichet ML, Oviedo-Orta E. Antigen-induced immunomodulation in the pathogenesis of atherosclerosis. Clin Dev Immunol. 2008;723539. https://doi.org/10.1155/2008/723539
- Khoshbayan A, Taheri F, Moghadam MT, Chegini Z, Shariati A. The association of Chlamydia pneumoniae infection with atherosclerosis: Review and update of in vitro and animal studies. Microb Pathog. 2021 May;154:104803. https://doi.org/10.1016/j.micpath.2021.104803
- Stein RA, Thompson LM. Epigenetic changes induced by pathogenic Chlamydia spp. Pathog Dis. 2023 Jan;81. https://doi.org/10.1093/femspd/ftad034
- Arjmandi D, Graeili Z, Mohammadi P, Arshadi M, Jafari Tadi M, Ardekani A, et al. Chlamydia pneumonia infection and risk of multiple sclerosis: A meta-analysis. Mult Scler Relat Disord. 2023 Sep;77:104862. https://doi.org/10.1016/j.msard.2023.104862
- Hahn DL. Does the asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS) exist? A narrative review from epidemiology and practice. Allergol Immunopathol. 2022;50(6):100–6. https://doi.org/10.15586/aei.v50i6.678
- Hammerschlag MR, Kohlhoff SA, Gaydos CA. Chlamydia pneumoniae. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 2015. p. 2174-2182.e2. https://doi.org/10.1016/B978-1-4557-4801-3.00184-3
- Chiu B, Viira E, Tucker W, Fong IW. Chlamydia pneumoniae, cytomegalovirus, and herpes simplex virus in atherosclerosis of the carotid artery. Circulation. 1997 Oct;96(7):2144–8. https://doi.org/10.1161/01.CIR.96.7.2144
- Paterson DL, Hall J, Rasmussen SJ, Timms P. Failure to detect Chlamydia pneumoniae in atherosclerotic plaques of Australian patients. Pathology. 1998 May;30(2):169–72. https://doi.org/10.1080/00313029800169166
- Selzman CH, Netea MG, Zimmerman MA, Weinberg A, Reznikov LL, Grover FL, et al. Atherogenic effects of Chlamydia pneumoniae: refuting the innocent bystander hypothesis. J Thorac Cardiovasc Surg. 2003 Sep;126(3):688–93. https://doi.org/10.1016/s0022-5223(03)00738-4
- Byrne GI, Kalayoglu MV. Chlamydia pneumoniae and atherosclerosis: Links to the disease process. Am Heart J. 1999 Nov;138(5 Pt 2):S488-90. https://doi.org/10.1016/s0002-8703(99)70282-6
- van Zandbergen G, Gieffers J, Kothe H, Rupp J, Bollinger A, Aga E, et al. Chlamydia pneumoniae multiply in neutrophil granulocytes and delay their spontaneous apoptosis. J Immunol. 2004 Feb;172(3):1768–76. https://doi.org/10.4049/jimmunol.172.3.1768
- Li M, Qian M, Kyler K, Xu J. Endothelial–Vascular Smooth Muscle Cells Interactions in Atherosclerosis. Front Cardiovasc Med. 2018;5(October):1–8. https://doi.org/10.3389/fcvm.2018.00151
- Joyee AG, Yang X. Role of Toll-Like Receptors in Immune Responses to Chlamydial Infections. Curr Pharm Des. 2008 Feb 1;14:593–600. https://doi.org/10.2174/138161208783885344
- Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI. Chlamydia pneumoniae--induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun. 2007 Feb;75(2):753–9. https://doi.org/10.1128/IAI.01386-06
- Chen S, Sorrentino R, Shimada K, Bulut Y, Doherty TM, Crother TR, et al. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation. J Immunol. 2008 Nov;181(10):7186–93. https://doi.org/10.4049/jimmunol.181.10.7186
- Bobryshev YV, Orekhov AN, Killingsworth MC, Lu J. Decreased expression of liver X receptor-α in macrophages infected with Chlamydia pneumoniae in human atherosclerotic arteries in situ. J Innate Immun. 2011;3(5):483–94. https://doi.org/10.1159/000327522
- Zhao GJ, Mo ZC, Tang SL, Ouyang XP, He PP, Lv YC, et al. Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells. Atherosclerosis. 2014 Aug;235(2):519–25. https://doi.org/10.1016/j.atherosclerosis.2014.05.943
- Wu X, Cheng B, Guo X, Wu Q, Sun S, He P. PPARα/γ signaling pathways are involved in Chlamydia pneumoniae-induced foam cell formation via upregulation of SR-A1 and ACAT1 and downregulation of ABCA1/G1. Microb Pathog. 2021 Dec;161(Pt B):105284. https://doi.org/10.1016/j.micpath.2021.105284
- Mei C li, He P, Cheng B, Liu W, Wang Y fu, Wan J jing. Chlamydia pneumoniae induces macrophage-derived foam cell formation via PPAR alpha and PPAR gamma-dependent pathways. Cell Biol Int. 2009 Mar;33(3):301–8. https://doi.org/10.1016/j.cellbi.2008.12.002
- Jiang SJ, Campbell LA, Berry MW, Rosenfeld ME, Kuo CC. Retinoic acid prevents Chlamydia pneumoniae-induced foam cell development in a mouse model of atherosclerosis. Microbes Infect. 2008 Oct;10(12–13):1393–7. https://doi.org/10.1016/j.micinf.2008.07.022
- Tumurkhuu G, Dagvadorj J, Porritt RA, Crother TR, Shimada K, Tarling EJ, et al. Chlamydia pneumoniae Hijacks a Host Autoregulatory IL-1β Loop to Drive Foam Cell Formation and Accelerate Atherosclerosis. Cell Metab. 2018 Sep;28(3):432-448.e4. https://doi.org/10.1016/j.cmet.2018.05.027
- Cheng B, Wu X, Sun S, Wu Q, Mei C, Xu Q, et al. MAPK-PPARα/γ signal transduction pathways are involved in Chlamydia pneumoniae-induced macrophage-derived foam cell formation. Microb Pathog. 2014;69–70:1–8. https://doi.org/10.1016/j.micpath.2014.03.001
- Kitazawa T, Fukushima A, Okugawa S, Yanagimoto S, Tsukada K, Tatsuno K, et al. Chlamydophilal antigens induce foam cell formation via c-Jun NH2-terminal kinase. Microbes Infect. 2007 Oct;9(12–13):1410–4. https://doi.org/10.1016/j.micinf.2007.07.003
- Zhao X, Miao G, Zhang L, Zhang Y, Zhao H, Xu Z, et al. Chlamydia pneumoniae Infection Induces Vascular Smooth Muscle Cell Migration and Atherosclerosis Through Mitochondrial Reactive Oxygen Species-Mediated JunB-Fra-1 Activation. Front cell Dev Biol. 2022;10:879023. https://doi.org/10.3389/fcell.2022.879023
- Liu J, Miao G, Wang B, Zheng N, Ma L, Chen X, et al. Chlamydia pneumoniae infection promotes monocyte transendothelial migration by increasing vascular endothelial cell permeability via the tyrosine phosphorylation of VE-cadherin. Biochem Biophys Res Commun. 2018 Mar;497(2):742–8. https://doi.org/10.1016/j.bbrc.2018.02.145
- Kurihara Y, Walenna NF, Ishii K, Soejima T, Chou B, Yoshimura M, et al. Chlamydia pneumoniae Lung Infection in Mice Induces Fatty Acid-Binding Protein 4-Dependent White Adipose Tissue Pathology. J Immunol. 2023 Apr;210(8):1086–97. https://doi.org/10.4049/jimmunol.2200601
- Evani SJ, Ramasubramanian AK. Biophysical regulation of Chlamydia pneumoniae-infected monocyte recruitment to atherosclerotic foci. Sci Rep. 2016 Jan;6:19058. https://doi.org/10.1038/srep19058
- Khan MA, Mohammad I, Banerjee S, Tomar A, Varughese KI, Mehta JL, et al. Oxidized LDL receptors: a recent update. Curr Opin Lipidol. 2023 Aug;34(4):147–55. https://doi.org/10.1097/MOL.0000000000000884
- Campbell LA, Lee AW, Rosenfeld ME, Kuo CC. Chlamydia pneumoniae induces expression of pro-atherogenic factors through activation of the lectin-like oxidized LDL receptor-1. Pathog Dis. 2013 Oct;69(1):1–6. https://doi.org/10.1111/2049-632X.12058
- Sun S, Duan X, Wu Q, He Y, Bu X, Ming X, et al. ERK1/2-PPARγ pathway is involved in Chlamydia pneumonia-induced human umbilical vein endothelial cell apoptosis through increased LOX-1 expression. J Recept Signal Transduct Res. 2020 Apr;40(2):126–32. https://doi.org/10.1080/10799893.2020.1719416
- Biocca S, Iacovelli F, Matarazzo S, Vindigni G, Oteri F, Desideri A, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583–95. https://doi.org/10.1080/15384101.2015.1026486
- Fryer RH, Schwobe EP, Woods ML, Rodgers GM. Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. J Investig Med. 1997 Apr;45(4):168–74. https://pubmed.ncbi.nlm.nih.gov/9154297/
- Al-Bannawi A, Al-Wesebai K, Taha S, Bakhiet M. Chlamydia pneumoniae induces chemokine expression by platelets in patients with atherosclerosis. Med Princ Pract. 2011;20(5):438–43. https://doi.org/10.1159/000324553
- Kälvegren H, Majeed M, Bengtsson T. Chlamydia pneumoniae binds to platelets and triggers P-selectin expression and aggregation: a causal role in cardiovascular disease? Arterioscler Thromb Vasc Biol. 2003 Sep;23(9):1677–83. https://doi.org/10.1161/01.ATV.0000084810.52464.D5
- Järemo P. Evidence that Chlamydia pneumoniae affects platelet activity in patients with acute myocardial infarction and ST-segment elevations. Scand J Infect Dis. 2001;33(10):747–8. https://doi.org/10.1080/003655401317074545
- Kälvegren H, Bylin H, Leanderson P, Richter A, Grenegård M, Bengtsson T. Chlamydia pneumoniae induces nitric oxide synthase and lipoxygenase-dependent production of reactive oxygen species in platelets. Effects on oxidation of low density lipoproteins. Thromb Haemost. 2005 Aug;94(2):327–35. https://doi.org/10.1160/TH04-06-0360
- Kälvegren H, Fridfeldt J, Garvin P, Wind L, Leanderson P, Kristenson M, et al. Correlation between rises in Chlamydia pneumoniae-specific antibodies, platelet activation and lipid peroxidation after percutaneous coronary intervention. Eur J Clin Microbiol Infect Dis. 2008 Jul;27(7):503–11. https://doi.org/10.1007/s10096-008-0465-y
- Vainas T, Kurvers HAJM, Mess WH, de Graaf R, Ezzahiri R, Tordoir JHM, et al. Chlamydia pneumoniae serology is associated with thrombosis-related but not with plaque-related microembolization during carotid endarterectomy. Stroke. 2002 May;33(5):1249–54. https://doi.org/10.1161/01.str.0000014508.65367.8f
- Kälvegren H, Andersson J, Grenegård M, Bengtsson T. Platelet activation triggered by Chlamydia pneumoniae is antagonized by 12-lipoxygenase inhibitors but not cyclooxygenase inhibitors. Eur J Pharmacol. 2007 Jul;566(1–3):20–7. https://doi.org/10.1016/j.ejphar.2007.03.024
- Gabriel AS, Ahnve S, Gnarpe H, Gnarpe J, Martinsson A. Azithromycin therapy in patients with chronic Chlamydia pneumoniae infection and coronary heart disease: immediate and long-term effects on inflammation, coagulation, and lipid status in a double-blind, placebo-controlled study. Eur J Intern Med. 2003 Dec;14(8):470–8. https://doi.org/10.1016/j.ejim.2003.07.001
- Kayikcioglu M, Tokgozoglu L. Current Treatment Options in Homozygous Familial Hypercholesterolemia. Pharmaceuticals (Basel). 2022 Dec;16(1). https://doi.org/10.3390/ph16010064
- Adiloglu AK, Can R, Kinay O, Aridogan BC. Infection with Chlamydia pneumoniae but not Helicobacter pylori is related to elevated apolipoprotein B levels. Acta Cardiol. 2005 Dec;60(6):599–604. https://pubmed.ncbi.nlm.nih.gov/16385920/
- Petyaev IM, Zigangirova NA, Tsibezov VV, Ross A, Bashmakov YK. Monoclonal antibodies against lipopolysaccharide of Chlamydia trachomatis with cross reactivity to human ApoB. Hybridoma. 2011 Apr;30(2):131–6. https://doi.org/10.1089/hyb.2010.0107
- Thota LN, Ponnusamy T, Philip S, Lu X, Mundkur L. Immune regulation by oral tolerance induces alternate activation of macrophages and reduces markers of plaque destabilization in Apobtm2Sgy/Ldlrtm1Her/J mice. Sci Rep. 2017 Jun;7(1):3997. https://doi.org/10.1038/s41598-017-04183-w
- Lu X, Xia M, Endresz V, Faludi I, Szabo A, Gonczol E, et al. Impact of multiple antigenic epitopes from ApoB100, hHSP60 and Chlamydophila pneumoniae on atherosclerotic lesion development in Apobtm2SgyLdlrtm1HerJ mice. Atherosclerosis. 2012 Nov;225(1):56–68. https://doi.org/10.1016/j.atherosclerosis.2012.07.021
- Mamata Y, Hakki A, Newton C, Burdash N, Klein TW, Friedman H. Differential effects of Chlamydia pneumoniae infection on cytokine levels in human T lymphocyte- and monocyte-derived cell cultures. Int J Med Microbiol. 2007;297(2):109–15. https://doi.org/10.1016/j.ijmm.2006.11.004
- Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, et al. Physiological roles of human interleukin-17 family. Exp Dermatol. 2024 Jan;33(1). https://doi.org/10.1111/exd.14964
- Chen S, Shimada K, Zhang W, Huang G, Crother TR, Arditi M. IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice. J Immunol. 2010 Nov;185(9):5619–27. https://doi.org/10.4049/jimmunol.1001879
- Zheng N, Zhang L, Wang B, Wang G, Liu J, Miao G, et al. Chlamydia pneumoniae infection promotes vascular smooth muscle cell migration via c-Fos/interleukin-17C signaling. Int J Med Microbiol. 2019 Dec;309(8):151340. https://doi.org/10.1016/j.ijmm.2019.151340
- Di Pietro M, De Santis F, Schiavoni G, Filardo S, Sessa R. Resveratrol in Chlamydia pneumoniae-induced foam cell formation and interleukin-17A synthesis. J Biol Regul Homeost Agents. 2013;27(2):509–18. https://pubmed.ncbi.nlm.nih.gov/23830400/
- Tuomainen AM, Hyvärinen K, Ehlers PI, Mervaala E, Leinonen M, Saikku P, et al. The effect of proatherogenic microbes on macrophage cholesterol homeostasis in apoE-deficient mice. Microb Pathog. 2011;51(3):217–24. https://doi.org/10.1016/j.micpath.2011.03.003
- Prochnau D, Rödel J, Hartmann M, Straube E, Figulla HR. Growth factor production in human endothelial cells after Chlamydia pneumoniae infection. Int J Med Microbiol. 2004 Jul;294(1):53–7. https://doi.org/10.1016/j.ijmm.2003.11.001
- Parma L, Peters HAB, Sluiter TJ, Simons KH, Lazzari P, de Vries MR, et al. bFGF blockade reduces intraplaque angiogenesis and macrophage infiltration in atherosclerotic vein graft lesions in ApoE3*Leiden mice. Sci Rep. 2020 Sep;10(1):15968. https://doi.org/10.1038/s41598-020-72992-7
- Rödel J, Lehmann M, Vogelsang H, Straube E. Chlamydia pneumoniae infection of aortic smooth muscle cells reduces platelet-derived growth factor receptor-beta expression. FEMS Immunol Med Microbiol. 2007 Nov;51(2):363–71. https://doi.org/10.1111/j.1574-695X.2007.00312.x
- Coombes BK, Chiu B, Fong IW, Mahony JB. Chlamydia pneumoniae infection of endothelial cells induces transcriptional activation of platelet-derived growth factor-B: a potential link to intimal thickening in a rabbit model of atherosclerosis. J Infect Dis. 2002 Jun;185(11):1621–30. https://doi.org/10.1086/340415
- Schumacher A, Seljeflot I, Lerkerød AB, Sommervoll L, Otterstad JE, Arnesen H. Chlamydia LPS and MOMP seropositivity are associated with different cytokine profiles in patients with coronary heart disease. Eur J Clin Invest. 2005 Jul;35(7):431–7. https://doi.org/10.1111/j.1365-2362.2005.01511.x
- Vikatmaa P, Lajunen T, Ikonen TS, Pussinen PJ, Lepäntalo M, Leinonen M, et al. Chlamydial lipopolysaccharide (cLPS) is present in atherosclerotic and aneurysmal arterial wall--cLPS levels depend on disease manifestation. Cardiovasc Pathol. 2010;19(1):48–54. https://doi.org/10.1016/j.carpath.2008.10.012
- Lajunen T, Vikatmaa P, Bloigu A, Ikonen T, Lepäntalo M, Pussinen PJ, et al. Chlamydial LPS and high-sensitivity CRP levels in serum are associated with an elevated body mass index in patients with cardiovascular disease. Innate Immun. 2008 Dec;14(6):375–82. https://doi.org/10.1177/1753425908099172
- Gerdes VEA, Verkooyen RP, Kwa VIH, de Groot E, van Gorp ECM, ten Cate H, et al. Chlamydial LPS antibodies, intima-media thickness and ischemic events in patients with established atherosclerosis. Atherosclerosis. 2003 Mar;167(1):65–71. https://doi.org/10.1016/s0021-9150(02)00150-8
- Schillinger M, Domanovits H, Mlekusch W, Bayegan K, Khanakah G, Laggner AN, et al. Anti chlamydia antibodies in patients with thoracic and abdominal aortic aneurysms. Wien Klin Wochenschr. 2002 Dec;114(23–24):972–7. https://pubmed.ncbi.nlm.nih.gov/12635464/
- Chandra HR, Choudhary N, O’Neill C, Boura J, Timmis GC, O’Neill WW. Chlamydia pneumoniae exposure and inflammatory markers in acute coronary syndrome (CIMACS). Am J Cardiol. 2001;88(3):214–8. Available from: https://doi.org/10.1016/s0002-9149(01)01628-9
- Wong YK, Dawkins KD, Ward ME. Circulating Chlamydia pneumoniae DNA as a predictor of coronary artery disease. J Am Coll Cardiol. 1999 Nov;34(5):1435–9. https://doi.org/10.1016/s0735-1097(99)00391-5
- Kontula K, Vuorio A, Turtola H, Saikku P. Association of seropositivity for Chlamydia pneumoniae and coronary artery disease in heterozygous familial hypercholesterolaemia. Vol. 354, Lancet; 1999. p. 46–7. https://doi.org/10.1016/S0140-6736(99)01691-8
- Tütüncü NB, Güvener N, Tütüncü T, Yilmaz M, Güvener M, Böke E, et al. Chlamydia pneumonia seropositivity correlates with serum fibrinogen and lipoprotein a levels: any role in atherosclerosis? Endocr J. 2001 Apr;48(2):269–74. https://doi.org/10.1507/endocrj.48.269
- Glader CA, Boman J, Saikku P, Stenlund H, Weinehall L, Hallmanns G, et al. The proatherogenic properties of lipoprotein(a) may be enhanced through the formation of circulating immune complexes containing Chlamydia pneumoniae-specific IgG antibodies. Eur Heart J. 2000 Apr;21(8):639–46. https://doi.org/10.1053/euhj.1999.1755
- Mitusch R, Luedemann J, Wood WG, Berger K, Schminke U, Suter M, et al. Asymptomatic carotid atherosclerosis is associated with circulating chlamydia pneumoniae DNA in younger normotensive subjects in a general population survey. Arterioscler Thromb Vasc Biol. 2005 Feb;25(2):386–91. https://doi.org/10.1161/01.ATV.0000151284.49967.a7
- Reverter JL, Tàssies D, Alonso N, Pellitero S, Sanmartí A, Reverter JC. Non-detectable Chlamydophila pneumoniae DNA in peripheral leukocytes in type 2 diabetes mellitus patients with and without carotid atherosclerosis. Med Clin. 2012 Jan;138(1):11–4. https://doi.org/10.1016/j.medcli.2011.02.029
- Mazza A, Bossone E, Gianicolo E, Mazza F, Distante A. [Lack of association between Chlamydia pneumoniae seropositivity and common carotid intima-media thickness in type 2 diabetic patients]. Monaldi Arch chest Dis. 2003 Dec;60(4):283–7. https://pubmed.ncbi.nlm.nih.gov/15061602/
- Lutsey PL, Pankow JS, Bertoni AG, Szklo M, Folsom AR. Serological evidence of infections and Type 2 diabetes: the MultiEthnic Study of Atherosclerosis. Diabet Med. 2009 Feb;26(2):149–52. https://doi.org/10.1111/j.1464-5491.2008.02632.x
- Lin CY, Su SB, Chang CC, Lee TM, Shieh JM, Guo HR. The association between Chlamydia pneumoniae and metabolic syndrome in Taiwanese adults. South Med J. 2009 Dec;102(12):1203–8. 0.1097/SMJ.0b013e3181c043d9
- Yan Y, Silvennoinen-Kassinen S, Leinonen M, Saikku P. Rapamycin can inhibit the development of Chlamydia pneumoniae, which might partly contribute to the prevention of in-stent restenosis. Cardiovasc Drugs Ther. 2010 Jun;24(3):189–95. https://doi.org/10.1007/s10557-010-6238-8
- Yan Y, Silvennoinen-Kassinen S, Törmäkangas L, Leinonen M, Saikku P. Selective cyclooxygenase inhibitors prevent the growth of Chlamydia pneumoniae in HL cells. Int J Antimicrob Agents. 2008 Jul;32(1):78–83. https://doi.org/10.1016/j.ijantimicag.2008.02.021
- Krayenbuehl PA, Wiesli P, Maly FE, Vetter W, Schulthess G. Progression of peripheral arterial occlusive disease is associated with Chlamydia pneumoniae seropositivity and can be inhibited by antibiotic treatment. Atherosclerosis. 2005 Mar;179(1):103–10. https://doi.org/10.1016/j.atherosclerosis.2004.08.031
- Vainas T, Stassen FRM, Schurink GWH, Tordoir JHM, Welten RJTJ, van den Akker LHJM, et al. Secondary prevention of atherosclerosis through chlamydia pneumoniae eradication (SPACE Trial): a randomised clinical trial in patients with peripheral arterial disease. Eur J Vasc Endovasc Surg. 2005 Apr;29(4):403–11. https://doi.org/10.1016/j.ejvs.2005.01.001
- Blessing E, Campbell LA, Rosenfeld ME, Chesebro B, Kuo CC. A 6 week course of azithromycin treatment has no beneficial effect on atherosclerotic lesion development in apolipoprotein E-deficient mice chronically infected with Chlamydia pneumoniae. J Antimicrob Chemother. 2005 Jun;55(6):1037–40. https://doi.org/10.1093/jac/dki128
- Jaff MR, Dale RA, Creager MA, Lipicky RJ, Constant J, Campbell LA, et al. Anti-chlamydial antibiotic therapy for symptom improvement in peripheral artery disease: prospective evaluation of rifalazil effect on vascular symptoms of intermittent claudication and other endpoints in Chlamydia pneumoniae seropositive patients (PROVIDENCE-1). Circulation. 2009 Jan;119(3):452–8. https://doi.org/10.1161/CIRCULATIONAHA.108.815308
- Sawayama Y, Tatsukawa M, Kikuchi K, Maeda S, Ohnishi H, Furusyo N, et al. Effect on carotid atherosclerosis of probucol plus levofloxacin for Chlamydia pneumoniae infection. J Infect Chemother. 2007 Apr;13(2):92–8. https://doi.org/10.1007/s10156-007-0510-2
- Cope AP. Regulation of autoimmunity by proinflammatory cytokines. Curr Opin Immunol. 1998 Dec;10(6):669–76. https://doi.org/10.1016/s0952-7915(98)80087-3